Activated carbon highly porous from recycled tobacco waste: a promising adsorbent for thiamethoxam removal
DOI:
10.52832/jesh.v4i4.448Palavras-chave:
Neonicotinoides, Biocarvão, Cigarro, Remediação, Superfície funcionalizadaResumo
Este trabalho teve como objetivo utilizar resíduos ilícitos de tabaco para produção de carvão ativado (CA) de grande área superficial e sua aplicação na remoção de tiametoxame da água. Por meio da ativação térmica e química, produzimos com sucesso CA derivados de tabaco, incluindo AC800-4-KOH, AC900-4-KOH e AC900-5-KOH. O AC900-4-KOH, em particular, apresentou uma área superficial excepcional de 3.294 m² g⁻¹, com grupos funcionais de superfície indicando sua aptidão para adsorção. Em nossa análise abrangente de adsorção, observamos a rápida remoção do tiametoxam, com mais de 95% de adsorção ocorrendo em apenas 5 minutos. O modelo de Freundlich descreveu melhor o processo de adsorção, revelando adsorção multicamadas nas superfícies AC inerentemente heterogêneas. Além disso, os resultados da isoterma de Langmuir destacaram a capacidade de adsorção máxima superior do AC900-4-KOH a 150,5 mg g⁻¹, ressaltando seu excepcional potencial de adsorção. As constantes de KLangmuir ilustraram ainda mais a robusta interação tiametoxam-AC, com AC900-5-KOH exibindo a maior afinidade. Nossos resultados demonstram a natureza espontânea, exotérmica e dependente da temperatura da adsorção do tiametoxam (ΔGº<0, ΔHº<0, ΔSº>0), enfatizando sua viabilidade termodinâmica favorável. Além disso, experimentos de eluição com água confirmaram a ausência de liberação significativa de metal dos adsorventes. Este estudo foi pioneiro no uso de resíduos de tabaco reciclado para produzir AC, apresentando capacidades excepcionais de adsorção de tiametoxam. Estas descobertas posicionam o AC como um candidato promissor para aplicações de tratamento de água e remediação ambiental.
Downloads
Métricas
Referências
Alammar, A., Park, S.-H., Ibrahim, I., Deepak, A., Holtzl, T., Dumée, L. F., et al. (2020). Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Applied Materials Today 21. https://doi.org/10.1016/j.apmt.2020.100878
Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393. https://doi.org/10.1016/j.jhazmat.2020.122383
Badi, N., Erra, A. R., Robles Hernandez, F. C., Okonkwo, A. O., Hobosyan, M., & Martirosyan, K. S. (2014). Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries. Nanoscale Research Letters 9(1): 1–8. https://doi.org/10.1186/1556-276X-9-360
Bonmatin, J. M., Mitchell, E. A. D., Glauser, G., Lumawig-Heitzman, E., Claveria, F., Bijleveld van Lexmond, M., et al. (2021). Residues of neonicotinoids in soil, water and people’s hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment 757. https://doi.org/10.1016/j.scitotenv.2020.143822
BRASIL. Ministério da Agricultura e Pecuária (2021). Coordenação Geral de Agrotóxicos e Afins. Sistema de Agrotóxicos Fitossanitários. Bula Cruiser 350 FS. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos
BRASIL (2022) Relatórios de comercialização de agrotóxico: boletim 2020. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2020/Vendas_ingr edientes_ativos_UF_2020_todos_os_IAs_quimicos.xls
Freitas, D. A., Barbosa, J. A., Labuto, G., Nocelli, R. C. F., & Carrilho, E. N. V. M. (2022). Removal of the pesticide thiamethoxam from sugarcane juice by magnetic nanomodified activated carbon. Environmental Science and Pollution Research 29(53):79855–79865. https://doi.org/10.1007/s11356-021-18484-1
Fernandes, J. O., Bernardino, C. A. R., Mahler, C. F., Santelli, R. E., Braz, B. F., Borges, R. C., et al. (2021). Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water, Air, and Soil Pollution 232(2). https://doi.org/10.1007/s11270-021-05030-5
Freundlich, H. (1907). Ueber Kolloidfällung und Adsorption. Zeitschrift für Chemie und Industrie der Kolloide 1(11):321–331. https://doi.org/10.1007/BF01813604
Gasparic, H. V., Grubelic, M., Uzelac, V. D., Bazok, R., Cacija, M., Drmic, Z., & Lemic, D. (2020). Neonicotinoid residues in sugar beet plants and soil under different agro-climatic conditions. Agriculture (Switzerland) 10(10): 1–16. https://doi.org/10.3390/agriculture10100484
González-Pradas, E., Ureña-Amate, M. D., Flores-Céspedes, F., Fernández-Pérez, M., Garratt, J., & Wilkins, R. (2002). Leaching of Imidacloprid and Procymidone in a Greenhouse of Southeast of Spain. Soil Science Society of America Journal 66(6):1821–1828. https://doi.org/10.2136/sssaj2002.1821
Gonçalves Jr, A. C., Zimmermann, J., Schwantes, D., Tarley, C. R. T., Conradi Junior, E., Henrique Dias de Oliveira, V., et al. (2022). Renewable Eco-Friendly Activated Biochar from Tobacco: Kinetic, Equilibrium and Thermodynamics Studies for Chlorpyrifos Removal. Separation Science and Technology (Philadelphia) 57(2):159–179. https://doi.org/10.1080/01496395.2021.1890776
Gonçalves Jr., A. C., Zimmermann, J., Schwantes, D., Oliveira, V. H. D., Dudczak, F. C., Tarley, C. R. T., Prete, M. C., Snak, A. (2023). Recycling of tobacco wastes in the development of ultra-high surface area activated carbon. Journal of Analytical and Applied Pyrolysis, 17 105965. https://doi.org/10.1016/j.jaap.2023.105965
Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry 34. http://dx.doi.org/10.1016/S0032-9592(98)00112-5
Hokkanen, S., Bhatnagar, A., & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008
Iancu, V.-I., Petre, J., Galaon, T., & Radu, G. L. (2019). Occurrence of neonicotinoid residues in Danube river and tributaries. Revista de Chimie 70(1):313–318. https://doi.org/10.37358/rc.19.1.6907
Kamran, U., Choi, J. R., Park, S. J.(2020). A Role of Activators for Efficient CO2 Affinity on Polyacrylonitrile-Based Porous Carbon Materials. Frontiers in Chemistry 8. https://doi.org/10.3389/fchem.2020.00710
Khan, Y. U., Lawson, D. A., & Tucker, R. J. (1997). Banded radiative heat transfer analysis. Communications in Numerical Methods in Engineering 13(10):803–813. https://doi.org/10.1002/(SICI)1099-0887(199710)13:10<803::AID-CNM109>3.0.CO;2-D
Lagergren, S. (1898). About the Theory of So-Called Adsorption of Soluble Substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 1st ed., 24:1-39.
Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. Part II.-Liquids. Journal of the Franklin Institute 184(5): 721. https://doi.org/10.1016/s0016-0032(17)90088-2
Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Liu, S. (2015). Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science 450:224–238. https://doi.org/10.1016/j.jcis.2015.03.013
Manfrin, J., Gonçalves, A. C., Schwantes, D., Conradi, E., Zimmermann, J., & Ziemer, G. L. (2021). Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+adsorption. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2020.104980
Manfrin, J., Gonçalves Junior, A. C., Schwantes, D., Zimmermann, J., & Conradi Junior, E. (2021). Effective Cd2+ removal from water using novel micro-mesoporous activated carbons obtained from tobacco: CCD approach, optimization, kinetic, and isotherm studies. Journal of Environmental Health Science and Engineering 19(2):1851–1874. https://doi.org/10.1007/s40201-021-00740-8
Matos, T. T. S., Schultz, J., Khan, M. Y., Zanoelo, E. F., Mangrich, A. S., Araújo, B. R., Navickiene, S., Romão, L. P. C. (2017). Using magnetized (Fe3O4/biochar nanocomposites) and activated biochar as adsorbents to remove two neuro-active pesticides from waters. Journal of the Brazilian Chemical Society 28(10):1975–1987. https://doi.org/10.21577/0103-5053.20170042
Milani, P. A., Consonni, J. L., Labuto, G., & Carrilho, E. N. V. M. (2018). Agricultural solid waste for sorption of metal ions, part II: competitive assessment in multielemental solution and lake water. Environmental Science and Pollution Research 25(36):35906–35914. https://doi.org/10.1007/s11356-018-1726-7
Narayanan, N., Gupta, S., Gajbhiye, V. T., & Manjaiah, K. M. (2017). Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere 173:502–511. https://doi.org/10.1016/j.chemosphere.2017.01.084
Oginni, O., Singh, K., Oporto, G., Dawson-Andoh, B., McDonald, L., & Sabolsky, E. (2019). Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports 7. https://doi.org/10.1016/j.biteb.2019.100266
ORINGIN. (2009). Origin Pro 8 Software. Northampton: OriginLab Corporation.
Panic, S., Guzsvány, V., Kónya, Z., Kukovecz, Á., & Boskovic, G. (2017). Kinetic, equilibrium and thermodynamic studies of thiamethoxam adsorption by multi-walled carbon nanotubes. International Journal of Environmental Science and Technology 14(6):1297–1306. https://doi.org/10.1007/s13762-016-1237-3
Redlich, O., & Peterson, D. L. (1959). A Useful Adsorption Isotherm. The Journal of Physical Chemistry 63(6): 1024–1024. https://doi.org/10.1021/j150576a611
Roghanizad, A., Karimi Abdolmaleki, M., Ghoreishi, S. M., & Dinari, M. (2020). One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Liquids 300. https://doi.org/10.1016/j.molliq.2019.112367
Sanz-Santos, E., Álvarez-Torrellas, S., Ceballos, L., Larriba, M., Águeda, V. I., & García, J. (2021). Application of sludge-based activated carbons for the effective adsorption of neonicotinoid pesticides. Applied Sciences (Switzerland) 11(7). https://doi.org/10.3390/app11073087
Schaafsma, A. W., Limay-Rios, V., Baute, T. S. & Smith, J. L. (2019). Neonicotinoid insecticide residues in subsurface drainage and open ditch water around maize fields in southwestern Ontario. PLoS ONE, 14(4). https://doi.org/10.1371/journal.pone.0214787
Schwantes, D., Gonçalves Jr, A. C., De Varennes, A., & Braccini, A. L. (2018). Modified grape stem as a renewable adsorbent for cadmium removal. Water Science and Technology 78(11):2308–2320. https://doi.org/10.2166/wst.2018.511
Schwantes, D., Gonçalves Jr., A. C., Perina, H. A., Tarley, C. R. T., Dragunski, D. C., Junior, E. C., & Zimmermann, J. (2022). Ecofriendly Biosorbents Produced from Cassava Solid Wastes: Sustainable Technology for the Removal of Cd2+, Pb2+, and Crtotal. Adsorption Science and Technology. https://doi.org/10.1155/2022/5935712
Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics 16(5):490–495. https://doi.org/10.1063/1.1746922
Steffen, V., Cardozo-Filho, L., Silva, E. A., Evangelista, L. R., Guirardello, R., & Mafra, M. R. (2015). Equilibrium modeling of ion adsorption based on Poisson–Boltzmann equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 468:159–166. https://doi.org/10.1016/j.colsurfa.2014.11.065
Suo, F., Liu, X., Li, C., Yuan, M., Zhang, B., Wang, J., et al. (2019). Mesoporous activated carbon from starch for superior rapid pesticide removal. International Journal of Biological Macromolecules 121:806–813. https://doi.org/10.1016/j.ijbiomac.2018.10.132
Tamer, Y., & Berber, H. (2022). Effective removal of crystal violet from aqueous solution by graphene oxide incorporated hydrogel beads as a novel bio-adsorbent: kinetic, isotherm and thermodynamic studies. Journal of Macromolecular Science, Part A 59(4):315–328. https://doi.org/10.1080/10601325.2022.2033125
THERMO SCIENTIFIC. (2017). Chromeleon 7.2 Chromatography Data Sustem. Waltham: Thermo Fischer Scientific Inc.
Wang, B., Yang, Y., Lu, Y., Wang, W., Wang, Q., Dong, X., & Zhao, J. (2020). Rapid and efficient removal of acetochlor from environmental water using Cr-MIL-101 sorbent modified with 3, 5-Bis(trifluoromethyl)phenyl isocyanate. Science of the Total Environment 710. https://doi.org/10.1016/j.scitotenv.2019.135512
Weber, W. J., & Morris, J. C. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division 89:31–59. http://dx.doi.org/10.1061/JSEDAI.0000430
Wei, Y., Wu, Y., Chang, Q., Xie, M., Wang, X., Mo, J., et al. (2017). Ultrasonic-assisted modification of a novel silkworm-excrement-based porous carbon with various Lewis acid metal ions for the sustained release of the pesticide thiamethoxam. RSC Advances 7(48):30020–30031. https://doi.org/10.1039/c7ra04595f
Yang, Y., Ma, X., Yang, C., Wang, Y., Cheng, J., Zhao, J., et al. (2022). Eco-friendly and acid-resistant magnetic porous carbon derived from ZIF-67 and corn stalk waste for effective removal of imidacloprid and thiamethoxam from water. Chemical Engineering Journal 430. https://doi.org/10.1016/j.cej.2021.132999
Yuan, N., Zhang, X., & Wang, L. (2020). The marriage of metal–organic frameworks and silica materials for advanced applications. Coordination Chemistry Reviews 421. https://doi.org/10.1016/j.ccr.2020.213442
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Journal of Education Science and Health
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.