Influence of Genetic Variants of the TLR7 Gene on the Pathophysiology of Systemic Lupus Erythematosus
DOI:
10.52832/jormed.v2.460Keywords:
Genetics, Systemic Lupus Erythematosus, TLR7, Variants, TreatmentsAbstract
Introduction: The TLR7 gene encodes the TLR7 protein, which is essential for recognizing pathogens and activating pro-inflammatory factors. Its deregulation is associated with Systemic Lupus Erythematosus (SLE), an autoimmune disease characterized by the deposition of immune complexes in tissues. Objective: To analyze TLR7 genetic variants and their pathophysiological and therapeutic implications in SLE. Methods: This is an integrative literature review. The articles were collected from the PubMed, Virtual Health Library (VHL) and Scientific Electronic Library Online (SciELO) databases, using the descriptors “TLR7”, “TLR”, “Autoimmune Diseases”, “Lupus”, “Systemic Lupus Erythematosus”, “Treatments”, “Gain Of Function” and “Polymorphism”, consulted in the Health Sciences Descriptors (Decs). The inclusion criteria were articles dated from 2014 to 2024, in Portuguese or English, available free of charge. Exclusion criteria were articles not related to TLR7 and its expression in SLE. Results: The literature shows that gain-of-function variants in addition to activating the TLR7 protein are related to neurological damage. Searches for significant SNPs showed that rs3853839, its genotypes and alleles, not only correlated with the development of the disease, but also showed an association with TLR7-related components and clinical signs of SLE. Conclusion: The genetic variants detected in TLR7 were consistently linked to SLE susceptibility in different populations around the world. In particular, rs3853839 emerged as a crucial marker in this context. These findings highlight potential therapeutic targets and biomarkers for SLE.
References
Accapezzato, D., Caccavale, R., Paroli, M. P., Gioia, C., Nguyen, B. L., Spadea, L., & Paroli, M. (2023). Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 24(7), 6578–6578. https://doi.org/10.3390/ijms24076578
Baek, W.-Y., Choi, Y.-S., Lee, S.-W., Son, I.-O., Jeon, K.-W., Choi, S.-D., & Suh, C.-H. (2021). Toll-like Receptor Signaling Inhibitory Peptide Improves Inflammation in Animal Model and Human Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 22(23), 12764. https://doi.org/10.3390/ijms222312764
Barber, M. R. W., Drenkard, C., Falasinnu, T., Hoi, A., Mak, A., Kow, N. Y., Svenungsson, E., Peterson, J., Clarke, A. E., & Ramsey-Goldman, R. (2021). Global epidemiology of systemic lupus erythematosus. Nature Reviews Rheumatology, 17(9), 515–532. https://doi.org/10.1038/s41584-021-00668-1
Barbosa, L. M., Santiago, M. B., Moretto, V.T., Athanazio, D. A., Takahashi, D., Reis, E. G, Lopes, M., Lemaire, D. C., & Reis, M. G. (2023). Toll-like receptor 9 polymorphisms in brazilian patients with systemic lupus erythematosus: a pilot study. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.244123
Brown, G. J., Cañete, P. F., Wang, H., Medhavy, A., Bones, J., Roco, J. A., He, Y., Qin, Y., Cappello, J., Ellyard, J. I., Bassett, K., Shen, Q., Burgio, G., Zhang, Y., Turnbull, C., Meng, X., Wu, P., Cho, E., Miosge, L. A., & Andrews, T. D. (2022). TLR7 gain-of-function genetic variation causes human lupus. Nature, 605(7909), 1–8. https://doi.org/10.1038/s41586-022-04642-z
Cosgrove, H. A., Gingras, S., Kim, M., Bastacky, S., Tilstra, J. S., & Shlomchik, M. J. (2023). B cell–intrinsic TLR7 expression drives severe lupus in TLR9-deficient mice. JCI Insight, 8(16). https://doi.org/10.1172/jci.insight.172219
David, C., Badonyi, M., Kechiche, R., Insalaco, A., Zecca, M., Benedetti, F. D., Orcesi, S., Chiapparini, L., Comoli, P., Federici, S., Gattorno, M., Ginevrino, M., Giorgio, E., Matteo, V., Moran-Alvarez, P., Politano, D., Prencipe, G., Sirchia, F., Volpi, S., & Masson, C. (2024). Interface Gain-of-Function Mutations in TLR7 Cause Systemic and Neuro-inflammatory Disease. Journal of Clinical Immunology, 44(2). https://doi.org/10.1007/s10875-024-01660-6
Fillatreau, S., Manfroi, B., & Dörner, T. (2020). Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nature Reviews Rheumatology, 17(2), 98–108. https://doi.org/10.1038/s41584-020-00544-4
Hisada, R., Kato, M., Sugawara, E., Kanda, M., Fujieda, Y., Oku, K., Bohgaki, T., Amengual, O., Horita, T., Yasuda, S., & Atsumi, T. (2019). Circulating plasmablasts contribute to antiphospholipid antibody production, associated with type I interferon upregulation. Journal of Thrombosis and Haemostasis, 17(7), 1134–1143. https://doi.org/10.1111/jth.14427
Jassim, A. S., Auda, I. G., & Ali, E. N. (2023). Toll-like receptor-7 gene polymorphism at 3− UTR (rs3853839) in relation to Systemic Lupus Erythematosus pathogenesis in Iraqi patients. Gene Reports, 33, 101822–101822. https://doi.org/10.1016/j.genrep.2023.101822
Jiao, H., Acar, G., Robinson, G. A., Ciurtin, C., Jury, E. C., & Kalea, A. Z. (2022). Diet and Systemic Lupus Erythematosus (SLE): From Supplementation to Intervention. International Journal of Environmental Research and Public Health, 19(19), 11895. https://doi.org/10.3390/ijerph191911895
Laska, M. J., Troldborg, A., Hansen, B., Stengaard-Pedersen, K., Junker, P., Nexø, B. A., & Voss, A. (2014). Polymorphisms within Toll-like receptors are associated with systemic lupus erythematosus in a cohort of Danish females. Rheumatology, 53(1), 48–55. https://doi.org/10.1093/rheumatology/ket316
Loures, C. M. G., Mara, Guimarães T. M. P. D., Ferreira, K. S.., Silva, M. V. F.., Alves, L. C. V., Cicarini, W. B., Nunes, F. F.C, Consoli, R. V., Neiva, C. L. S., Madureira de Pádua, P., Santos, I. L., Moreira, J. D., Peixoto, V. P C. T., & Carvalho, M. G. (2023). Cell phenotypes as activity biomarkers in patients with Systemic Lupus Erythematosus. Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/s2175-97902023e20052
Marwa, A., Mostafa, F. M., Khalil, M., Salama, M. F., Abdelrahman, A., & Ali, A. (2022). Association of TLR7 and TLR9 genes polymorphisms in Egyptian patients with systemic lupus erythematosus. Heliyon, 8(11), e11680–e11680. https://doi.org/10.1016/j.heliyon.2022.e11680
Nandakumar, K. S., & Nündel, K. (2022). Editorial: Systemic lupus erythematosus - predisposition factors, pathogenesis, diagnosis, treatment and disease models. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1118180
Pacheco, G. V., Nakazawa, E., Bello, J. R., Barbosa, R. E., Jiménez, E. D., González, L. J., Pérez, G. J., Rivero, N. A., Angulo, V., & López, R. F. (2022). Copy Number Variation and Frequency of rs179008 in TLR7 Gene Associated with Systemic Lupus Erythematosus in Two Mexican Populations. Journal of Immunology Research, 2022(553901), 1–6. https://doi.org/10.1155/2022/2553901
Pan, L., Lu, M.-P., Wang, J.-H., Xu, M., & Yang, S.-R. (2019). Immunological pathogenesis and treatment of systemic lupus erythematosus. World Journal of Pediatrics, 16(1), 19–30. https://doi.org/10.1007/s12519-019-00229-3
Robinson, S., & Thomas, R. (2021). Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.654701
Sim, T. M., Ong, S. J., Mak, A., & Tay, S. H. (2022). Type I Interferons in Systemic Lupus Erythematosus: A Journey from Bench to Bedside. International Journal of Molecular Sciences, 23(5), 2505. https://doi.org/10.3390/ijms23052505
Skonieczna, K., Woźniacka, A., Czajkowski, R., Styczyński, J., Krenska, A., Robak, E., Gawrych, M., Kaszewski, S., Wysocki, M., & Grzybowski, T. (2018). X-linked TLR7 gene polymorphisms are associated with diverse immunological conditions but not with discoid lupus erythematosus in Polish patients. Postepy Dermatologii I Alergologii, 35(1), 26–32. https://doi.org/10.5114/pdia.2017.69984
Tanaka, Y. (2020). State‐of‐the‐art treatment of systemic lupus erythematosus. International Journal of Rheumatic Diseases, 23(4), 465–471. https://doi.org/10.1111/1756-185x.13817
Vale, E. C. S. do, & Garcia, L. C. (2023). Cutaneous lupus erythematosus: a review of etiopathogenic, clinical, diagnostic and therapeutic aspects. Anais Brasileiros de Dermatologia, 98(3). https://doi.org/10.1016/j.abd.2022.09.005
Villalvazo, P., Carriazo, S., Rojas-Rivera, J., Ramos, A. M., Ortiz, A., & Perez-Gomez, M.V. (2022). Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Ndt Plus, 15(11), 1973–1980. https://doi.org/10.1093/ckj/sfac152
Vinuesa, C. G., Shen, N., & Ware, T. (2023). Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nature Reviews Nephrology, 19(9), 558–572. https://doi.org/10.1038/s41581-023-00732-x
Wang, C.-M., Chang, S.-W., Wu, Y.-J. J., Lin, J.-C., Ho, H.-H., Chou, T.-C., Yang, B., Wu, J., & Chen, J.-Y. (2014). Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Scientific Reports, 4(1). https://doi.org/10.1038/srep03792
Wang, M., Peng, Y., Li, H., & Zhang, X. (2022). From monogenic lupus to TLR7/MyD88-targeted therapy. The Innovation, 3(5), 100299–100299. https://doi.org/10.1016/j.xinn.2022.100299
Wang, T., Marken, J., Chen, J., Tran, V. B., Li, Q.-Z., Li, M., Cerosaletti, K., Elkon, K. B., Zeng, X., & Giltiay, N. V. (2019). High TLR7 Expression Drives the Expansion of CD19+CD24hiCD38hi Transitional B Cells and Autoantibody Production in SLE Patients. Frontiers in Immunology, 10(1243). https://doi.org/10.3389/fimmu.2019.01243
Zhang, Y., Liu, J., Wang, C., Liu, J., & Lu, W. (2021). Toll-Like Receptors Gene Polymorphisms in Autoimmune Disease. Frontiers in Immunology, 12(672346):1-11. https://doi.org/10.3389/fimmu.2021.672346
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Research in Medicine and Health
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.