Antidepressivos: do descarte incorreto aos danos ambientais

Autores

DOI:

10.52832/jormed.v1i.223

Palavras-chave:

Fármacos. Ecotoxicidade. Resíduos Sólidos. Meio Ambiente. Emergente.

Resumo

A pandemia da COVID-19 acarretou no aumento do consumo de fármacos em todo o mundo, em especial os antidepressivos. Como consequência aumenta o descarte, inclusive de forma incorreta. Os danos causados ao meio ambiente devido o descarte incorreto de medicamentos é imensurável e muitas vezes irreversível, uma vez que os organismos expostos podem sofrer diversos problemas e serem levados até a morte. Esta pesquisa bibliográfica analisou estudos que apresentam danos ambientais causados pelo descarte incorreto de medicamentos antidepressivos, apresentando os impactos (bióticos) no meio ambiente. Buscas foram realizadas no Google Acadêmico, PubMed e Science Direct. Palavras-chaves foram selecionadas e a busca refinada resultou em 15 artigos. Todos os artigos utilizados corroboram a ideia de que os medicamentos antidepressivos causam problemas para os seres vivos, principalmente os aquáticos, apresentando danos no organismo do animal. São escassos os dados relacionados ao tema, uma vez que são vários os parâmetros que podem ser analisados e os seres vivos são muito complexos em interação e reação quando entram em contato com antidepressivos. Mas todos concordam que os danos existem. Medidas são necessárias para minimizar este problema e mais pesquisas são de suma importância para tornar a literatura cada vez mais robusta sobre este tema contemporâneo e urgente.

Biografia do Autor

Eduarda Medran Rangel

Doutora em Ciência e Engenharia de Materiais – Universidade Federal de Pelotas (UFPel). Professora na Prefeitura Municipal de Rio Grande, RS, Brasil.

Referências

Ajima, M.N.O., Pandey, P.K. (2021). Effects of Pharmaceutical Waste in Aquatic Life. Effects of Pharmaceutical Waste in Aquatic Life. Advances In Fisheries Biotechnology, 441-452 DOI: https://doi.org/10.1007/978-981-16-3215-0_25

Alnahas, F.,Yeboah, P.,Fliedel, L., Abdin, A. Y., Alhareth, K. (2020). Expired Medication: societal, regulatory and ethical aspects of a wasted opportunity. International Journal of Environmental Research and Public Health, 17(3), 787. http://dx.doi.org/10.3390/ijerph17030787. DOI: https://doi.org/10.3390/ijerph17030787

Antonopoulou, M., Dormousoglou, M., Spyrou, A., Dimitroulia, A.A., Vlastos, D. (2022) An overall assessment of the effects of antidepressant paroxetine on aquatic organisms and human cells. Science of The Total Environment, 852, 158393, http://dx.doi.org/10.1016/j.scitotenv.2022.158393. DOI: https://doi.org/10.1016/j.scitotenv.2022.158393

Arlos, M. J., Bragg, L. M., Servos, M. R., & Parker, W. J. (2014). Simulation of the fate of selected pharmaceuticals and personal care products in a highly impacted reach of a Canadian watershed. Science of the Total Environment, 485-486, 193–204. https://doi.org/10.1016/j.scitotenv.2014.03.092 DOI: https://doi.org/10.1016/j.scitotenv.2014.03.092

Batt, A. L., Kincaid, T. M., Kostich, M. S., Lazorchak, J. M., & Olsen, A. R. (2015). Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environmental Toxicology and Chemistry, 35(4), 874–881. https://doi.org/10.1002/etc.3161 DOI: https://doi.org/10.1002/etc.3161

Beek, T. A. D., Weber, F., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A. (2016). Pharmaceuticals in the environment- Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. http://dx.doi.org/10.1002/etc.3339. DOI: https://doi.org/10.1002/etc.3339

Berg, C., Olsen, K., Sakshaug, S. (red), Reseptregisteret 2014–2018 [The Norwegian Prescription Database 2014–2018] Legemiddelstatistikk 2019:2, Oslo, Norge: Folkehelseinstituttet, 2019.

Brooks, B. W. (2014). Fish on Prozac (and Zoloft): Ten years later. Aquatic Toxicology, 151, 61–67. https://doi.org/10.1016/j.aquatox.2014.01.007 DOI: https://doi.org/10.1016/j.aquatox.2014.01.007

Castillo-Zacarías, C., Barocio, M. E., Hidalgo-Vázquez, E., Sosa-Hernández, J. E., Parra-Arroyo, L., López-Pacheco, I. Y., Barceló, D., Iqbal, H. N. M., & Parra-Saldívar, R. (2020). Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Science of the Total Environment, 143722. https://doi.org/10.1016/j.scitotenv.2020.143722 DOI: https://doi.org/10.1016/j.scitotenv.2020.143722

Chen, F., Gong, Z., & Kelly, B. C. (2017). Bioaccumulation Behavior of Pharmaceuticals and Personal Care Products in Adult Zebrafish (Danio rerio): Influence of Physical-Chemical Properties and Biotransformation. Environmental Science & Technology, 51(19), 11085–11095. https://doi.org/10.1021/acs.est.7b02918 DOI: https://doi.org/10.1021/acs.est.7b02918

Chen, G., Wang, L., Li, W., Zhang, Q., Hu, T. (2020). Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. Ecotoxicology and Environmental Safety, 194,110444. http://dx.doi.org/10.1016/j.ecoenv.2020.110444. DOI: https://doi.org/10.1016/j.ecoenv.2020.110444

Conselho Federal de Farmácia (CFF). (2019). Descarte de medicamentos pode ter logística reversa obrigatória 2019 [Internet]. 2019. acessado 2023 jul 2. Disponível em: https://www.cff.org.br/noticia.php?id=5275#:~:text=No%20Brasil%2C%20aproximadamente%2014%20mil,no%20esgoto%20ou%20no%20solo

Corcoran, J., Winter, M. J., & Tyler, C. R. (2010). Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Critical Reviews in Toxicology, 40(4), 287–304. https://doi.org/10.3109/10408440903373590 DOI: https://doi.org/10.3109/10408440903373590

Craig, P. M., Moyes, C. D., & LeMoine, C. M. R. (2018). Sensing and responding to energetic stress: Evolution of the AMPK network. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 224, 156–169. https://doi.org/10.1016/j.cbpb.2017.11.001 DOI: https://doi.org/10.1016/j.cbpb.2017.11.001

Cunha, D. L., Araujo, F. G., Marques, M. (2017). Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity⠴a review. Environmental Science and Pollution Research, 24(31), 24076-24091. http://dx.doi.org/10.1007/s11356-017-0170-4. DOI: https://doi.org/10.1007/s11356-017-0170-4

Duan, S., Fu, Y., Dong, S., Ma, Y., Meng, H., Guo, R., Chen, J., Liu, Y., Li, Y. (2022). Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. Ecotoxicology and Environmental Safety, 230,113147, http://dx.doi.org/10.1016/j.ecoenv.2021.113147. DOI: https://doi.org/10.1016/j.ecoenv.2021.113147

Dutta, M. The Importance of Scholarly Reviews in Medical Literature. Ear, Nose & Throat Journal, v. 98, n. 5, p. 251-252, 2019. DOI: https://doi.org/10.1177/0145561319827725

Ebrahim, A. J., Teni, F. S., Yimenu, D. K. (2019). Unused and Expired Medications: are they a threat? a facility-based cross-sectional study. Journal Of Primary Care & Community Health, 10, 215013271984785. http://dx.doi.org/10.1177/2150132719847857. DOI: https://doi.org/10.1177/2150132719847857

Estévez-Calvar, N., Canesi, L., Montagna, M., Faimali, M., Piazza, V., Garaventa, F. (2017). Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Marine Environmental Research, 128, 88-97. http://dx.doi.org/10.1016/j.marenvres.2016.05.021. DOI: https://doi.org/10.1016/j.marenvres.2016.05.021

Fernandes, J. P., Duarte, P., Almeida, C. M. R., Carvalho, M. F., Mucha, A. P. (2020). Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. Journal of Environmental Chemical Engineering, 8(4), 103881. http://dx.doi.org/10.1016/j.jece.2020.103881. DOI: https://doi.org/10.1016/j.jece.2020.103881

Fong, P. P., Bury, T. B., Dworkin-Brodsky, A. D., Jasion, C. M., & Kell, R. C. (2015). The antidepressants venlafaxine (“Effexor”) and fluoxetine (“Prozac”) produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopoma americanum). Marine Environmental Research, 103, 89–94. DOI: https://doi.org/10.1016/j.marenvres.2014.11.010

Fong, P. P., & Ford, A. T. (2014). The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquatic Toxicology, 151, 4–13. https://doi.org/10.1016/j.aquatox.2013.12.003 DOI: https://doi.org/10.1016/j.aquatox.2013.12.003

Ford, A. T., Hyett, B., Cassidy, D., & Malyon, G. (2018). The effects of fluoxetine on attachment and righting behaviours in marine (Gibbula unbilicalis) and freshwater (Lymnea stagnalis) gastropods. Ecotoxicology, 27(4), 477–484. https://doi.org/10.1007/s10646-018-1919-3 DOI: https://doi.org/10.1007/s10646-018-1919-3

Giebułtowicz, J., Nałęcz-Jawecki, G. (2014). Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicology And Environmental Safety, 104, 103-109. http://dx.doi.org/10.1016/j.ecoenv.2014.02.020. DOI: https://doi.org/10.1016/j.ecoenv.2014.02.020

González Peña, O. I., López Zavala, M. Á., & Cabral Ruelas, H. (2021). Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. International Journal of Environmental Research and Public Health, 18(5), 2532. NCBI. https://doi.org/10.3390/ijerph18052532 DOI: https://doi.org/10.3390/ijerph18052532

Grabicova, K., Grabic, R., Fedorova, G., Fick, J., Cerveny, D., Kolarova, J., Turek, J., Zlabek, V., & Randak, T. (2017). Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Research, 124, 654–662. https://doi.org/10.1016/j.watres.2017.08.018 DOI: https://doi.org/10.1016/j.watres.2017.08.018

Guirguis K. Medications collected for disposal by outreach pharmacists in Australia.(2010). Pharm World Sci.32:52–8. DOI: https://doi.org/10.1007/s11096-009-9340-x

Gundlach, M., Augustin, M., Smith, K. E. C., Kämpfer, D., Paulzen, M., Hollert, H. (2021) Effects of the antidepressant mirtazapine on the swimming behaviour and gene expression rate of Danio rerio embryos – Is the sedating effect seen in humans also evident for fish? Science Of The Total Environment, 792, 148368, http://dx.doi.org/10.1016/j.scitotenv.2021.148368. DOI: https://doi.org/10.1016/j.scitotenv.2021.148368

Hoyle, M. (2011). Accounting for the Drug Life Cycle and Future Drug Prices in Cost-Effectiveness Analysis. Pharmacoeconomics, 29(1), 1-15. http://dx.doi.org/10.2165/11584230-000000000-00000. DOI: https://doi.org/10.2165/11584230-000000000-00000

Kellner, M.; Porseryd, T.; Hallgren, S.; Porsch-Hällström, I.; Hansen, S.H.; Olsén, K.H. (2016). Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus). Aquatic Toxicology, 173, 19-28. http://dx.doi.org/10.1016/j.aquatox.2015.12.026. DOI: https://doi.org/10.1016/j.aquatox.2015.12.026

Lucca, J.M., Alshayban, D. & Alsulaiman, D. (2019) Storage and Disposal Practice of Unused Medication among the Saudi families: An Endorsement for Best Practice. Imam Journal of Applied Sciences, 4, 1.

Magnuson, J. T., Longenecker-Wright, Z., Havranek, I., Monticelli, G., Brekken, H. K., Kallenborn, R., Schlenk, D., Sydnes, M. O., & Pampanin, D. M. (2022). Bioaccumulation potential of the tricyclic antidepressant amitriptyline in a marine Polychaete, Nereis virens. Science of the Total Environment, 851, 158193. DOI: https://doi.org/10.1016/j.scitotenv.2022.158193

Makki, M., Hassali, M. A., Awaisu, A. & Hashmi, F. (2019). The prevalence of unused medications in homes. Journal of Pharmacy Practice and Education, 7(2):61. DOI: https://doi.org/10.3390/pharmacy7020061

Mehdi, H., Bragg, L. M., Servos, M. R., & Craig, P. M. (2019). Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Frontiers in Physiology, 10. DOI: https://doi.org/10.3389/fphys.2019.01431

Metcalfe, C. D., Chu, S., Judt, C., Li, H., Oakes, K. D., Servos, M. R., & Andrews, D. M. (2010). Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environmental Toxicology and Chemistry, 29(1), 79–89. https://doi.org/10.1002/etc.27 DOI: https://doi.org/10.1002/etc.27

Mole, R. A., & Brooks, B. W. (2019). Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environmental Pollution, 250, 1019–1031. https://doi.org/10.1016/j.envpol.2019.04.118 DOI: https://doi.org/10.1016/j.envpol.2019.04.118

Moreira, D. G., Aires, A., de Lourdes Pereira, M., & Oliveira, M. (2022). Levels and effects of antidepressant drugs to aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 256, 109322. DOI: https://doi.org/10.1016/j.cbpc.2022.109322

Nalecz-Jaercki, G., Wawryniuk, M., Giebuitowicz, J., Olkowski, A. & Drobniewska, A. (2020). Influence of Selected Antidepressants on the Ciliated Protozoan Spirostomum ambiguum: toxicity, bioaccumulation, and biotransformation products. Molecules, 25(7)1476, http://dx.doi.org/10.3390/molecules25071476. DOI: https://doi.org/10.3390/molecules25071476

Nakamura, Y., Yamamoto, H., Sekizawa, J., Kondo, T., Hirai, N., & Tatarazako, N. (2008). The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): Acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere, 70(5), 865–873. https://doi.org/10.1016/j.chemosphere.2007.06.089 DOI: https://doi.org/10.1016/j.chemosphere.2007.06.089

Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M., & Hernández, F. (2021). Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674. DOI: https://doi.org/10.1016/j.envint.2021.106674

Nowakowska, K., Giebułtowicz, J., Kamaszewski, M., Adamski, A., Szudrowicz, H., Ostaszewska, T., Solarska-Dzięciołowska, U., Nałęcz-Jawecki, G., Wroczyński, P., & Drobniewska, A. (2020). Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 229, 108670. DOI: https://doi.org/10.1016/j.cbpc.2019.108670

Omidian, H., Razmara, J., Parvizpour, S., Tabrizchi, H., Masoudi-Sobhanzadeh, Y. & Omidi, Y. (2023). Tracing drugs from discovery to disposal. Drug Discovery Today, 28(5) 103538. http://dx.doi.org/10.1016/j.drudis.2023.103538. DOI: https://doi.org/10.1016/j.drudis.2023.103538

Overmyer, J. P., Smith, P. F., Kellock, K. A., Kwon, J.-W., & Armbrust, K. L. (2009). Assessment of the toxicological interaction of sertraline with cholinesterase inhibiting insecticides in aquatic insects using the black fly,Simulium vittatumIS-7. Environmental Toxicology, NA-NA. https://doi.org/10.1002/tox.20471 DOI: https://doi.org/10.1002/tox.20471

Petrović, M., Škrbić, B., Živančev, J., Ferrando-Climent, L., & Barcelo, D. (2014). Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Science of the Total Environment, 468-469, 415–428. https://doi.org/10.1016/j.scitotenv.2013.08.079 DOI: https://doi.org/10.1016/j.scitotenv.2013.08.079

Rabeea, S. A., Merchant, H. A., Khan, M. U., Kow, C. S., Hasan, S. S. (2021). Surging trends in prescriptions and costs of antidepressants in England amid COVID-19. Daru Journal Of Pharmaceutical Sciences, 29(1), p. 217-221. http://dx.doi.org/10.1007/s40199-021-00390-z. DOI: https://doi.org/10.1007/s40199-021-00390-z

Ramirez, A. J., Brain, R. A., Usenko, S., Mottaleb, M. A., O’Donnell, J. G., Stahl, L. L., Wathen, J. B., Snyder, B. D., Pitt, J. L., Perez-Hurtado, P., Dobbins, L. L., Brooks, B. W., & Chambliss, C. K. (2009). Occurrence of pharmaceuticals and personal care products in fish: Results Of A National Pilot Study In The United States. Environmental Toxicology and Chemistry, 28(12), 2587. https://doi.org/10.1897/08-561.1 DOI: https://doi.org/10.1897/08-561.1

Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1-3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100 DOI: https://doi.org/10.1016/j.jhazmat.2009.10.100

Shi, Y., Chen, C., Wu, X., Han, Z., Zhang, S., Chen, K., Qiu, X. (2022). Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comparative Biochemistry And Physiology Part C: Toxicology & Pharmacology, 260, 109417. http://dx.doi.org/10.1016/j.cbpc.2022.109417. DOI: https://doi.org/10.1016/j.cbpc.2022.109417

Schuijt, L. M., Olusoiji, O., Dubey, A., Rodríguez-Sánchez, P., Osman, R., Van den Brink, P. J., & van den Berg, S. J. P. (2023). Effects of the antidepressant fluoxetine on the swimming behaviour of the amphipod Gammarus pulex: Comparison of short-term and long-term toxicity in the laboratory and the semi-field. Science of the Total Environment, 872, 162173. DOI: https://doi.org/10.1016/j.scitotenv.2023.162173

Schultz, M. M., & Furlong, E. T. (2008). Trace Analysis of Antidepressant Pharmaceuticals and Their Select Degradates in Aquatic Matrixes by LC/ESI/MS/MS. Analytical Chemistry, 80(5), 1756–1762. https://doi.org/10.1021/ac702154e DOI: https://doi.org/10.1021/ac702154e

Schultz, M. M., Painter, M. M., Bartell, S. E., Logue, A., Furlong, E. T., Werner, S. L., & Schoenfuss, H. L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104(1-2), 38–47. https://doi.org/10.1016/j.aquatox.2011.03.011 DOI: https://doi.org/10.1016/j.aquatox.2011.03.011

Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., & Faggio, C. (2018). Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. Science of the Total Environment, 631-632, 789–794. https://doi.org/10.1016/j.scitotenv.2018.03.076 DOI: https://doi.org/10.1016/j.scitotenv.2018.03.076

Sharma, A., Kumar, N., Mudhoo, A., Garg, V. K. (2023). Phytobiomass-based nanoadsorbents for sequestration of aquatic emerging contaminants: an overview. Journal Of Environmental Chemical Engineering, 11(2), 109506. http://dx.doi.org/10.1016/j.jece.2023.109506. DOI: https://doi.org/10.1016/j.jece.2023.109506

Sonowal, M. K. D. S., Desai, C. & Kapadia, J. D. (2016). A survey of knowledge, attitude, and practice of consumers at a tertiary care hospital regarding the disposal of unused medicines. Journal of Basic and Clinical Pharmacy, 8, 4–7. DOI: https://doi.org/10.4103/0976-0105.195079

Steinbach, C., Fedorova, G., Prokes, M., Grabicova, K., Machova, J., Grabic, R., Valentova, O., Kroupova, H. K. (2013). Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.). Science Of The Total Environment, 461-462, 198-206. http://dx.doi.org/10.1016/j.scitotenv.2013.05.002. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.002

Stewart, A. M., Grossman, L., Nguyen, M., Maximino, C., Rosemberg, D. B., Echevarria, D. J., & Kalueff, A. V. (2014). Aquatic toxicology of fluoxetine: Understanding the knowns and the unknowns. Aquatic Toxicology, 156, 269–273. https://doi.org/10.1016/j.aquatox.2014.08.014 DOI: https://doi.org/10.1016/j.aquatox.2014.08.014

Sumpter, J. P., & Margiotta-Casaluci, L. (2022). Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. Toxics, 10(5), 233. https://doi.org/10.3390/toxics10050233 DOI: https://doi.org/10.3390/toxics10050233

Sun, L., Xin, L., Peng, Z., Jin, R., Jin, Y., Qian, H., & Fu, Z. (2013). Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environmental Toxicology, 29(12), 1367–1378. https://doi.org/10.1002/tox.21867 DOI: https://doi.org/10.1002/tox.21867

Thompson, W. A., Shvartsburd, Z., Vijayan, M. M. (2022). The antidepressant venlafaxine perturbs cardiac development and function in larval zebrafish. Aquatic Toxicology, 242, 106041. http://dx.doi.org/10.1016/j.aquatox.2021.106041. DOI: https://doi.org/10.1016/j.aquatox.2021.106041

Vaclavik, J., Sehonova, P., Hodkovicova, N., Vecerkova, L., Blahova, J., Franc, A., Marsalek, P., Mares, J., Tichy, F.; Svobodova, Z. (2020). The effect of foodborne sertraline on rainbow trout (Oncorhynchus mykiss). Science of the Total Environment, 708, 135082. http://dx.doi.org/10.1016/j.scitotenv.2019.135082. DOI: https://doi.org/10.1016/j.scitotenv.2019.135082

Van der Ven, K., Keil, D., Moens, L. N., Van Leemput, K., van Remortel, P., & De Coen, W. M. (2006). Neuropharmaceuticals in the environment: mianserin-induced neuroendocrine disruption in zebrafish (danio rerio) using CDNA microarrays. Environmental Toxicology and Chemistry, 25(10), 2645. https://doi.org/10.1897/05-495r.1 DOI: https://doi.org/10.1897/05-495R.1

Wu, G., Wang, X., Zhang, X., Ren, H., Wang, Y., Yu, Q., Wei, S., Geng, J. (2023). Nontarget screening based on molecular networking strategy to identify transformation products of citalopram and sertraline in wastewater. Water Research, 232, 119509. http://dx.doi.org/10.1016/j.watres.2022.119509. DOI: https://doi.org/10.1016/j.watres.2022.119509

Xie, Z.; LU, G.; Li, S.; Nie, Y.; Ma, B. & Liu, J. (2015). Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere, 135, 146-155. http://dx.doi.org/10.1016/j.chemosphere.2015.04.031. DOI: https://doi.org/10.1016/j.chemosphere.2015.04.031

Wong, R. Y., Oxendine, S. E., & Godwin, J. (2013). Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics, 14(1), 348. https://doi.org/10.1186/1471-2164-14-348 DOI: https://doi.org/10.1186/1471-2164-14-348

Yamindago, A., Lee, N., Lee, N., Jo, Y., Woo, S., & Yum, S. (2021). Fluoxetine in the environment may interfere with the neurotransmission or endocrine systems of aquatic animals. Ecotoxicology and Environmental Safety, 227, 11293. DOI: https://doi.org/10.1016/j.ecoenv.2021.112931

Yang, Z.; Lu, T.; Zhu, Y.; Zhang, Q.; Zhou, Z.; Pan, X. & Qian, H. (2019). Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Science Of The Total Environment, 654, 129-134, http://dx.doi.org/10.1016/j.scitotenv.2018.11.164. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.164

Yang, M., Qiu, W., Chen, J., Zhan, J., Pan, C., Lei, X., & Wu, M. (2014). Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151, 68–76. https://doi.org/10.1016/j.aquatox.2013.12.029 DOI: https://doi.org/10.1016/j.aquatox.2013.12.029

Yu, B., Han, Q., Li, C., Zhu, Y., Jin, X.,Dai, Z. (2021). Influencing factors of venlafaxine degradation at boron-doped diamond anode. Arabian Journal Of Chemistry, 15(1), 103463. http://dx.doi.org/10.1016/j.arabjc.2021.103463. DOI: https://doi.org/10.1016/j.arabjc.2021.103463

Publicado

20/07/2023

Como Citar

Medran Rangel, E. ., Medran Rangel, A., & Machado Machado, F. (2023). Antidepressivos: do descarte incorreto aos danos ambientais. Journal of Research in Medicine and Health, 1, 01–12. https://doi.org/10.52832/jormed.v1i.223

Edição

Seção

Artigo de Revisão