Antidepressivos: do descarte incorreto aos danos ambientais
DOI:
10.52832/jormed.v1i.223Palavras-chave:
Fármacos. Ecotoxicidade. Resíduos Sólidos. Meio Ambiente. Emergente.Resumo
A pandemia da COVID-19 acarretou no aumento do consumo de fármacos em todo o mundo, em especial os antidepressivos. Como consequência aumenta o descarte, inclusive de forma incorreta. Os danos causados ao meio ambiente devido o descarte incorreto de medicamentos é imensurável e muitas vezes irreversível, uma vez que os organismos expostos podem sofrer diversos problemas e serem levados até a morte. Esta pesquisa bibliográfica analisou estudos que apresentam danos ambientais causados pelo descarte incorreto de medicamentos antidepressivos, apresentando os impactos (bióticos) no meio ambiente. Buscas foram realizadas no Google Acadêmico, PubMed e Science Direct. Palavras-chaves foram selecionadas e a busca refinada resultou em 15 artigos. Todos os artigos utilizados corroboram a ideia de que os medicamentos antidepressivos causam problemas para os seres vivos, principalmente os aquáticos, apresentando danos no organismo do animal. São escassos os dados relacionados ao tema, uma vez que são vários os parâmetros que podem ser analisados e os seres vivos são muito complexos em interação e reação quando entram em contato com antidepressivos. Mas todos concordam que os danos existem. Medidas são necessárias para minimizar este problema e mais pesquisas são de suma importância para tornar a literatura cada vez mais robusta sobre este tema contemporâneo e urgente.
Referências
Ajima, M.N.O., Pandey, P.K. (2021). Effects of Pharmaceutical Waste in Aquatic Life. Effects of Pharmaceutical Waste in Aquatic Life. Advances In Fisheries Biotechnology, 441-452 DOI: https://doi.org/10.1007/978-981-16-3215-0_25
Alnahas, F.,Yeboah, P.,Fliedel, L., Abdin, A. Y., Alhareth, K. (2020). Expired Medication: societal, regulatory and ethical aspects of a wasted opportunity. International Journal of Environmental Research and Public Health, 17(3), 787. http://dx.doi.org/10.3390/ijerph17030787. DOI: https://doi.org/10.3390/ijerph17030787
Antonopoulou, M., Dormousoglou, M., Spyrou, A., Dimitroulia, A.A., Vlastos, D. (2022) An overall assessment of the effects of antidepressant paroxetine on aquatic organisms and human cells. Science of The Total Environment, 852, 158393, http://dx.doi.org/10.1016/j.scitotenv.2022.158393. DOI: https://doi.org/10.1016/j.scitotenv.2022.158393
Arlos, M. J., Bragg, L. M., Servos, M. R., & Parker, W. J. (2014). Simulation of the fate of selected pharmaceuticals and personal care products in a highly impacted reach of a Canadian watershed. Science of the Total Environment, 485-486, 193–204. https://doi.org/10.1016/j.scitotenv.2014.03.092 DOI: https://doi.org/10.1016/j.scitotenv.2014.03.092
Batt, A. L., Kincaid, T. M., Kostich, M. S., Lazorchak, J. M., & Olsen, A. R. (2015). Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environmental Toxicology and Chemistry, 35(4), 874–881. https://doi.org/10.1002/etc.3161 DOI: https://doi.org/10.1002/etc.3161
Beek, T. A. D., Weber, F., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A. (2016). Pharmaceuticals in the environment- Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. http://dx.doi.org/10.1002/etc.3339. DOI: https://doi.org/10.1002/etc.3339
Berg, C., Olsen, K., Sakshaug, S. (red), Reseptregisteret 2014–2018 [The Norwegian Prescription Database 2014–2018] Legemiddelstatistikk 2019:2, Oslo, Norge: Folkehelseinstituttet, 2019.
Brooks, B. W. (2014). Fish on Prozac (and Zoloft): Ten years later. Aquatic Toxicology, 151, 61–67. https://doi.org/10.1016/j.aquatox.2014.01.007 DOI: https://doi.org/10.1016/j.aquatox.2014.01.007
Castillo-Zacarías, C., Barocio, M. E., Hidalgo-Vázquez, E., Sosa-Hernández, J. E., Parra-Arroyo, L., López-Pacheco, I. Y., Barceló, D., Iqbal, H. N. M., & Parra-Saldívar, R. (2020). Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Science of the Total Environment, 143722. https://doi.org/10.1016/j.scitotenv.2020.143722 DOI: https://doi.org/10.1016/j.scitotenv.2020.143722
Chen, F., Gong, Z., & Kelly, B. C. (2017). Bioaccumulation Behavior of Pharmaceuticals and Personal Care Products in Adult Zebrafish (Danio rerio): Influence of Physical-Chemical Properties and Biotransformation. Environmental Science & Technology, 51(19), 11085–11095. https://doi.org/10.1021/acs.est.7b02918 DOI: https://doi.org/10.1021/acs.est.7b02918
Chen, G., Wang, L., Li, W., Zhang, Q., Hu, T. (2020). Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. Ecotoxicology and Environmental Safety, 194,110444. http://dx.doi.org/10.1016/j.ecoenv.2020.110444. DOI: https://doi.org/10.1016/j.ecoenv.2020.110444
Conselho Federal de Farmácia (CFF). (2019). Descarte de medicamentos pode ter logística reversa obrigatória 2019 [Internet]. 2019. acessado 2023 jul 2. Disponível em: https://www.cff.org.br/noticia.php?id=5275#:~:text=No%20Brasil%2C%20aproximadamente%2014%20mil,no%20esgoto%20ou%20no%20solo
Corcoran, J., Winter, M. J., & Tyler, C. R. (2010). Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Critical Reviews in Toxicology, 40(4), 287–304. https://doi.org/10.3109/10408440903373590 DOI: https://doi.org/10.3109/10408440903373590
Craig, P. M., Moyes, C. D., & LeMoine, C. M. R. (2018). Sensing and responding to energetic stress: Evolution of the AMPK network. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 224, 156–169. https://doi.org/10.1016/j.cbpb.2017.11.001 DOI: https://doi.org/10.1016/j.cbpb.2017.11.001
Cunha, D. L., Araujo, F. G., Marques, M. (2017). Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity⠴a review. Environmental Science and Pollution Research, 24(31), 24076-24091. http://dx.doi.org/10.1007/s11356-017-0170-4. DOI: https://doi.org/10.1007/s11356-017-0170-4
Duan, S., Fu, Y., Dong, S., Ma, Y., Meng, H., Guo, R., Chen, J., Liu, Y., Li, Y. (2022). Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. Ecotoxicology and Environmental Safety, 230,113147, http://dx.doi.org/10.1016/j.ecoenv.2021.113147. DOI: https://doi.org/10.1016/j.ecoenv.2021.113147
Dutta, M. The Importance of Scholarly Reviews in Medical Literature. Ear, Nose & Throat Journal, v. 98, n. 5, p. 251-252, 2019. DOI: https://doi.org/10.1177/0145561319827725
Ebrahim, A. J., Teni, F. S., Yimenu, D. K. (2019). Unused and Expired Medications: are they a threat? a facility-based cross-sectional study. Journal Of Primary Care & Community Health, 10, 215013271984785. http://dx.doi.org/10.1177/2150132719847857. DOI: https://doi.org/10.1177/2150132719847857
Estévez-Calvar, N., Canesi, L., Montagna, M., Faimali, M., Piazza, V., Garaventa, F. (2017). Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Marine Environmental Research, 128, 88-97. http://dx.doi.org/10.1016/j.marenvres.2016.05.021. DOI: https://doi.org/10.1016/j.marenvres.2016.05.021
Fernandes, J. P., Duarte, P., Almeida, C. M. R., Carvalho, M. F., Mucha, A. P. (2020). Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. Journal of Environmental Chemical Engineering, 8(4), 103881. http://dx.doi.org/10.1016/j.jece.2020.103881. DOI: https://doi.org/10.1016/j.jece.2020.103881
Fong, P. P., Bury, T. B., Dworkin-Brodsky, A. D., Jasion, C. M., & Kell, R. C. (2015). The antidepressants venlafaxine (“Effexor”) and fluoxetine (“Prozac”) produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopoma americanum). Marine Environmental Research, 103, 89–94. DOI: https://doi.org/10.1016/j.marenvres.2014.11.010
Fong, P. P., & Ford, A. T. (2014). The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquatic Toxicology, 151, 4–13. https://doi.org/10.1016/j.aquatox.2013.12.003 DOI: https://doi.org/10.1016/j.aquatox.2013.12.003
Ford, A. T., Hyett, B., Cassidy, D., & Malyon, G. (2018). The effects of fluoxetine on attachment and righting behaviours in marine (Gibbula unbilicalis) and freshwater (Lymnea stagnalis) gastropods. Ecotoxicology, 27(4), 477–484. https://doi.org/10.1007/s10646-018-1919-3 DOI: https://doi.org/10.1007/s10646-018-1919-3
Giebułtowicz, J., Nałęcz-Jawecki, G. (2014). Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicology And Environmental Safety, 104, 103-109. http://dx.doi.org/10.1016/j.ecoenv.2014.02.020. DOI: https://doi.org/10.1016/j.ecoenv.2014.02.020
González Peña, O. I., López Zavala, M. Á., & Cabral Ruelas, H. (2021). Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. International Journal of Environmental Research and Public Health, 18(5), 2532. NCBI. https://doi.org/10.3390/ijerph18052532 DOI: https://doi.org/10.3390/ijerph18052532
Grabicova, K., Grabic, R., Fedorova, G., Fick, J., Cerveny, D., Kolarova, J., Turek, J., Zlabek, V., & Randak, T. (2017). Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Research, 124, 654–662. https://doi.org/10.1016/j.watres.2017.08.018 DOI: https://doi.org/10.1016/j.watres.2017.08.018
Guirguis K. Medications collected for disposal by outreach pharmacists in Australia.(2010). Pharm World Sci.32:52–8. DOI: https://doi.org/10.1007/s11096-009-9340-x
Gundlach, M., Augustin, M., Smith, K. E. C., Kämpfer, D., Paulzen, M., Hollert, H. (2021) Effects of the antidepressant mirtazapine on the swimming behaviour and gene expression rate of Danio rerio embryos – Is the sedating effect seen in humans also evident for fish? Science Of The Total Environment, 792, 148368, http://dx.doi.org/10.1016/j.scitotenv.2021.148368. DOI: https://doi.org/10.1016/j.scitotenv.2021.148368
Hoyle, M. (2011). Accounting for the Drug Life Cycle and Future Drug Prices in Cost-Effectiveness Analysis. Pharmacoeconomics, 29(1), 1-15. http://dx.doi.org/10.2165/11584230-000000000-00000. DOI: https://doi.org/10.2165/11584230-000000000-00000
Kellner, M.; Porseryd, T.; Hallgren, S.; Porsch-Hällström, I.; Hansen, S.H.; Olsén, K.H. (2016). Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus). Aquatic Toxicology, 173, 19-28. http://dx.doi.org/10.1016/j.aquatox.2015.12.026. DOI: https://doi.org/10.1016/j.aquatox.2015.12.026
Lucca, J.M., Alshayban, D. & Alsulaiman, D. (2019) Storage and Disposal Practice of Unused Medication among the Saudi families: An Endorsement for Best Practice. Imam Journal of Applied Sciences, 4, 1.
Magnuson, J. T., Longenecker-Wright, Z., Havranek, I., Monticelli, G., Brekken, H. K., Kallenborn, R., Schlenk, D., Sydnes, M. O., & Pampanin, D. M. (2022). Bioaccumulation potential of the tricyclic antidepressant amitriptyline in a marine Polychaete, Nereis virens. Science of the Total Environment, 851, 158193. DOI: https://doi.org/10.1016/j.scitotenv.2022.158193
Makki, M., Hassali, M. A., Awaisu, A. & Hashmi, F. (2019). The prevalence of unused medications in homes. Journal of Pharmacy Practice and Education, 7(2):61. DOI: https://doi.org/10.3390/pharmacy7020061
Mehdi, H., Bragg, L. M., Servos, M. R., & Craig, P. M. (2019). Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Frontiers in Physiology, 10. DOI: https://doi.org/10.3389/fphys.2019.01431
Metcalfe, C. D., Chu, S., Judt, C., Li, H., Oakes, K. D., Servos, M. R., & Andrews, D. M. (2010). Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environmental Toxicology and Chemistry, 29(1), 79–89. https://doi.org/10.1002/etc.27 DOI: https://doi.org/10.1002/etc.27
Mole, R. A., & Brooks, B. W. (2019). Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environmental Pollution, 250, 1019–1031. https://doi.org/10.1016/j.envpol.2019.04.118 DOI: https://doi.org/10.1016/j.envpol.2019.04.118
Moreira, D. G., Aires, A., de Lourdes Pereira, M., & Oliveira, M. (2022). Levels and effects of antidepressant drugs to aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 256, 109322. DOI: https://doi.org/10.1016/j.cbpc.2022.109322
Nalecz-Jaercki, G., Wawryniuk, M., Giebuitowicz, J., Olkowski, A. & Drobniewska, A. (2020). Influence of Selected Antidepressants on the Ciliated Protozoan Spirostomum ambiguum: toxicity, bioaccumulation, and biotransformation products. Molecules, 25(7)1476, http://dx.doi.org/10.3390/molecules25071476. DOI: https://doi.org/10.3390/molecules25071476
Nakamura, Y., Yamamoto, H., Sekizawa, J., Kondo, T., Hirai, N., & Tatarazako, N. (2008). The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): Acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere, 70(5), 865–873. https://doi.org/10.1016/j.chemosphere.2007.06.089 DOI: https://doi.org/10.1016/j.chemosphere.2007.06.089
Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M., & Hernández, F. (2021). Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674. DOI: https://doi.org/10.1016/j.envint.2021.106674
Nowakowska, K., Giebułtowicz, J., Kamaszewski, M., Adamski, A., Szudrowicz, H., Ostaszewska, T., Solarska-Dzięciołowska, U., Nałęcz-Jawecki, G., Wroczyński, P., & Drobniewska, A. (2020). Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 229, 108670. DOI: https://doi.org/10.1016/j.cbpc.2019.108670
Omidian, H., Razmara, J., Parvizpour, S., Tabrizchi, H., Masoudi-Sobhanzadeh, Y. & Omidi, Y. (2023). Tracing drugs from discovery to disposal. Drug Discovery Today, 28(5) 103538. http://dx.doi.org/10.1016/j.drudis.2023.103538. DOI: https://doi.org/10.1016/j.drudis.2023.103538
Overmyer, J. P., Smith, P. F., Kellock, K. A., Kwon, J.-W., & Armbrust, K. L. (2009). Assessment of the toxicological interaction of sertraline with cholinesterase inhibiting insecticides in aquatic insects using the black fly,Simulium vittatumIS-7. Environmental Toxicology, NA-NA. https://doi.org/10.1002/tox.20471 DOI: https://doi.org/10.1002/tox.20471
Petrović, M., Škrbić, B., Živančev, J., Ferrando-Climent, L., & Barcelo, D. (2014). Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Science of the Total Environment, 468-469, 415–428. https://doi.org/10.1016/j.scitotenv.2013.08.079 DOI: https://doi.org/10.1016/j.scitotenv.2013.08.079
Rabeea, S. A., Merchant, H. A., Khan, M. U., Kow, C. S., Hasan, S. S. (2021). Surging trends in prescriptions and costs of antidepressants in England amid COVID-19. Daru Journal Of Pharmaceutical Sciences, 29(1), p. 217-221. http://dx.doi.org/10.1007/s40199-021-00390-z. DOI: https://doi.org/10.1007/s40199-021-00390-z
Ramirez, A. J., Brain, R. A., Usenko, S., Mottaleb, M. A., O’Donnell, J. G., Stahl, L. L., Wathen, J. B., Snyder, B. D., Pitt, J. L., Perez-Hurtado, P., Dobbins, L. L., Brooks, B. W., & Chambliss, C. K. (2009). Occurrence of pharmaceuticals and personal care products in fish: Results Of A National Pilot Study In The United States. Environmental Toxicology and Chemistry, 28(12), 2587. https://doi.org/10.1897/08-561.1 DOI: https://doi.org/10.1897/08-561.1
Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1-3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100 DOI: https://doi.org/10.1016/j.jhazmat.2009.10.100
Shi, Y., Chen, C., Wu, X., Han, Z., Zhang, S., Chen, K., Qiu, X. (2022). Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comparative Biochemistry And Physiology Part C: Toxicology & Pharmacology, 260, 109417. http://dx.doi.org/10.1016/j.cbpc.2022.109417. DOI: https://doi.org/10.1016/j.cbpc.2022.109417
Schuijt, L. M., Olusoiji, O., Dubey, A., Rodríguez-Sánchez, P., Osman, R., Van den Brink, P. J., & van den Berg, S. J. P. (2023). Effects of the antidepressant fluoxetine on the swimming behaviour of the amphipod Gammarus pulex: Comparison of short-term and long-term toxicity in the laboratory and the semi-field. Science of the Total Environment, 872, 162173. DOI: https://doi.org/10.1016/j.scitotenv.2023.162173
Schultz, M. M., & Furlong, E. T. (2008). Trace Analysis of Antidepressant Pharmaceuticals and Their Select Degradates in Aquatic Matrixes by LC/ESI/MS/MS. Analytical Chemistry, 80(5), 1756–1762. https://doi.org/10.1021/ac702154e DOI: https://doi.org/10.1021/ac702154e
Schultz, M. M., Painter, M. M., Bartell, S. E., Logue, A., Furlong, E. T., Werner, S. L., & Schoenfuss, H. L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104(1-2), 38–47. https://doi.org/10.1016/j.aquatox.2011.03.011 DOI: https://doi.org/10.1016/j.aquatox.2011.03.011
Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., & Faggio, C. (2018). Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. Science of the Total Environment, 631-632, 789–794. https://doi.org/10.1016/j.scitotenv.2018.03.076 DOI: https://doi.org/10.1016/j.scitotenv.2018.03.076
Sharma, A., Kumar, N., Mudhoo, A., Garg, V. K. (2023). Phytobiomass-based nanoadsorbents for sequestration of aquatic emerging contaminants: an overview. Journal Of Environmental Chemical Engineering, 11(2), 109506. http://dx.doi.org/10.1016/j.jece.2023.109506. DOI: https://doi.org/10.1016/j.jece.2023.109506
Sonowal, M. K. D. S., Desai, C. & Kapadia, J. D. (2016). A survey of knowledge, attitude, and practice of consumers at a tertiary care hospital regarding the disposal of unused medicines. Journal of Basic and Clinical Pharmacy, 8, 4–7. DOI: https://doi.org/10.4103/0976-0105.195079
Steinbach, C., Fedorova, G., Prokes, M., Grabicova, K., Machova, J., Grabic, R., Valentova, O., Kroupova, H. K. (2013). Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.). Science Of The Total Environment, 461-462, 198-206. http://dx.doi.org/10.1016/j.scitotenv.2013.05.002. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.002
Stewart, A. M., Grossman, L., Nguyen, M., Maximino, C., Rosemberg, D. B., Echevarria, D. J., & Kalueff, A. V. (2014). Aquatic toxicology of fluoxetine: Understanding the knowns and the unknowns. Aquatic Toxicology, 156, 269–273. https://doi.org/10.1016/j.aquatox.2014.08.014 DOI: https://doi.org/10.1016/j.aquatox.2014.08.014
Sumpter, J. P., & Margiotta-Casaluci, L. (2022). Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. Toxics, 10(5), 233. https://doi.org/10.3390/toxics10050233 DOI: https://doi.org/10.3390/toxics10050233
Sun, L., Xin, L., Peng, Z., Jin, R., Jin, Y., Qian, H., & Fu, Z. (2013). Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environmental Toxicology, 29(12), 1367–1378. https://doi.org/10.1002/tox.21867 DOI: https://doi.org/10.1002/tox.21867
Thompson, W. A., Shvartsburd, Z., Vijayan, M. M. (2022). The antidepressant venlafaxine perturbs cardiac development and function in larval zebrafish. Aquatic Toxicology, 242, 106041. http://dx.doi.org/10.1016/j.aquatox.2021.106041. DOI: https://doi.org/10.1016/j.aquatox.2021.106041
Vaclavik, J., Sehonova, P., Hodkovicova, N., Vecerkova, L., Blahova, J., Franc, A., Marsalek, P., Mares, J., Tichy, F.; Svobodova, Z. (2020). The effect of foodborne sertraline on rainbow trout (Oncorhynchus mykiss). Science of the Total Environment, 708, 135082. http://dx.doi.org/10.1016/j.scitotenv.2019.135082. DOI: https://doi.org/10.1016/j.scitotenv.2019.135082
Van der Ven, K., Keil, D., Moens, L. N., Van Leemput, K., van Remortel, P., & De Coen, W. M. (2006). Neuropharmaceuticals in the environment: mianserin-induced neuroendocrine disruption in zebrafish (danio rerio) using CDNA microarrays. Environmental Toxicology and Chemistry, 25(10), 2645. https://doi.org/10.1897/05-495r.1 DOI: https://doi.org/10.1897/05-495R.1
Wu, G., Wang, X., Zhang, X., Ren, H., Wang, Y., Yu, Q., Wei, S., Geng, J. (2023). Nontarget screening based on molecular networking strategy to identify transformation products of citalopram and sertraline in wastewater. Water Research, 232, 119509. http://dx.doi.org/10.1016/j.watres.2022.119509. DOI: https://doi.org/10.1016/j.watres.2022.119509
Xie, Z.; LU, G.; Li, S.; Nie, Y.; Ma, B. & Liu, J. (2015). Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere, 135, 146-155. http://dx.doi.org/10.1016/j.chemosphere.2015.04.031. DOI: https://doi.org/10.1016/j.chemosphere.2015.04.031
Wong, R. Y., Oxendine, S. E., & Godwin, J. (2013). Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics, 14(1), 348. https://doi.org/10.1186/1471-2164-14-348 DOI: https://doi.org/10.1186/1471-2164-14-348
Yamindago, A., Lee, N., Lee, N., Jo, Y., Woo, S., & Yum, S. (2021). Fluoxetine in the environment may interfere with the neurotransmission or endocrine systems of aquatic animals. Ecotoxicology and Environmental Safety, 227, 11293. DOI: https://doi.org/10.1016/j.ecoenv.2021.112931
Yang, Z.; Lu, T.; Zhu, Y.; Zhang, Q.; Zhou, Z.; Pan, X. & Qian, H. (2019). Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Science Of The Total Environment, 654, 129-134, http://dx.doi.org/10.1016/j.scitotenv.2018.11.164. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.164
Yang, M., Qiu, W., Chen, J., Zhan, J., Pan, C., Lei, X., & Wu, M. (2014). Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151, 68–76. https://doi.org/10.1016/j.aquatox.2013.12.029 DOI: https://doi.org/10.1016/j.aquatox.2013.12.029
Yu, B., Han, Q., Li, C., Zhu, Y., Jin, X.,Dai, Z. (2021). Influencing factors of venlafaxine degradation at boron-doped diamond anode. Arabian Journal Of Chemistry, 15(1), 103463. http://dx.doi.org/10.1016/j.arabjc.2021.103463. DOI: https://doi.org/10.1016/j.arabjc.2021.103463
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Journal of Research in Medicine and Health
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.