The Role of Cytogenetics and Immunophenotyping Techniques in the Differential Diagnosis of Acute Myeloid Leukemias
DOI:
10.52832/jormed.v2.411Keywords:
Cytogenetics., Flow cytometry. , Blastic crisis., Immunophenotyping. , Acute Myeloid Leukemia.Abstract
Introduction: Acute myeloid leukemia (AML) is a neoplasm characterized by the uncontrolled proliferation of precursor cells of the myeloid lineage in the bone marrow, resulting in visible morphological manifestations and immature cells in the peripheral circulation. The World Health Organization (WHO) currently classifies AML subtypes based on both morphological and genetic aspects. Objective: To evaluate the main diagnostic criteria for AML and identify the role played by cytogenetic analysis and immunophenotyping in the differential diagnosis of this pathology. Methods: This is a literature review using scientific articles available in the PubMed(US National Library of Medicine) and Scielo(Scientific Electronic Library Online) databases. DeCS descriptors with the Boolean operator "AND" were used, including "myeloid leukemia", "Immunophenotyping " and "cytogenetics". Free full texts, published in peer-reviewed journals, available in English and Portuguese, and studies published between 2019 and 2023. Studies that were not directly related to the proposed topic were excluded from the analysis. Results: The diagnosis of AML combines information from the blood count with cytogenetic analysis and immunophenotyping. Genetic analysis, through karyotyping, identifies AML subtypes by specific chromosomal translocations. Immunophenotyping uses antibodies to identify markers of immaturity, differentiating AML from lymphoblastic leukemias. These approaches are essential for an accurate and differential diagnosis of AML. Conclusion: Cytogenetic research and immunophenotyping play essential roles in the differential diagnosis of AML, providing essential information to guide treatment and patient care, based on their cytogenetic and immunophenotypic characteristics.
References
Allahbakhshian Farsani, M., Rafiee, M., Aghaee Nezhad, H., Salari, S., Gharehbaghian, A., & Mohammadi, M. H. (2020). The Expression of P53, MDM2, c-myc, and P14ARF Genes in Newly Diagnosed Acute Lymphoblastic Leukemia Patients. Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion, 36(2), 277–283. https://doi.org/10.1007/s12288-019-01214-6
Boucher, A. C., Caldwell, K. J., Crispino, J. D., & Flerlage, J. E. (2021). Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia, 35(12), 3352–3360. https://doi.org/10.1038/s41375-021-01414-y
Chanias, I., Wilk, C. M., Benz, R., Daskalakis, M., Stüssi, G., Schmidt, A., Bacher, U., Bonadies, N., & On Behalf Of The Swiss Mds Study Group (2020). Survey on Recommended Health Care for Adult Patients with Myelodysplastic Syndromes Identifies Areas for Improvement. International journal of environmental research and public health, 17(24), 9562. https://doi.org/10.3390/ijerph17249562
Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W., Aghaeepour, N., Akdis, M., Allez, M., Almeida, L. N., Alvisi, G., Anderson, G., Andrä, I., Annunziato, F., Anselmo, A., Bacher, P., Baldari, C. T., Bari, S., Barnaba, V., … Zychlinsky, A. (2019). Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European journal of immunology, 49(10), 1457–1973. https://doi.org/10.1002/eji.201970107
DiGiuseppe, J. A., & Wood, B. L. (2019). Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytometry. Part B, Clinical cytometry, 96(4), 256–265. https://doi.org/10.1002/cyto.b.21833
Dix, C., Lo, T. H., Clark, G., & Abadir, E. (2020). Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. Journal of clinical medicine, 9(6), 1714. https://doi.org/10.3390/jcm9061714
Ferreira, M., Santos, D., Paiva De Jesus, G., Lívia, P., Ferreira, R., & Ferreira França. (2019). Leucemia Mieloide, Aguda E Crônica: Diagnósticos E Possíveis Tratamentos. https://portal.unisepe.com.br/unifia/wp-content/uploads/sites/10001/2019/02/022_LEUCEMIA-MIELOIDE-AGUDA-E-CR%C3%94NICA-DIAGN%C3%93STICOS-E-POSS%C3%8DVEIS-TRATAMENTOS.pdf
Galera, P. K., Jiang, C., & Braylan, R. (2019). Immunophenotyping of Acute Myeloid Leukemia. Methods in molecular biology (Clifton, N.J.), 2032, 281–296. https://doi.org/10.1007/978-1-4939-9650-6_15
Gianfaldoni, G., Mannelli, F., Intermesoli, T., Bencini, S., Giupponi, D., Farina, G., Cutini, I., Bonetti, M. I., Masciulli, A., Audisio, E., Ferrero, D., Pavoni, C., Scattolin, A. M., Bosi, A., Rambaldi, A., & Bassan, R. (2020). Early peripheral clearance of leukemia-associated immunophenotypes in AML: centralized analysis of a randomized trial. Blood advances, 4(2), 301–311. https://doi.org/10.1182/bloodadvances.2019000406
Grob, T., Al Hinai, A. S. A., Sanders, M. A., Kavelaars, F. G., Rijken, M., Gradowska, P. L., Biemond, B. J., Breems, D. A., Maertens, J., van Marwijk Kooy, M., Pabst, T., de Weerdt, O., Ossenkoppele, G. J., van de Loosdrecht, A. A., Huls, G. A., Cornelissen, J. J., Beverloo, H. B., Löwenberg, B., Jongen-Lavrencic, M., & Valk, P. J. M. (2022). Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood, 139(15), 2347–2354. https://doi.org/10.1182/blood.2021014472
Haferlach, T., & Schmidts, I. (2020). The power and potential of integrated diagnostics in acute myeloid leukaemia. British journal of haematology, 188(1), 36–48. https://doi.org/10.1111/bjh.16360
Li, K., Chen, L., Zhang, H., Wang, L., Sha, K., Du, X., Li, D., Zheng, Z., Pei, R., Lu, Y., & Tong, H. (2021). High expression of COMMD7 is an adverse prognostic factor in acute myeloid leukemia. Aging, 13(8), 11988–12006. https://doi.org/10.18632/aging.202901
Li, W. (2022). Flow Cytometry in the Diagnosis of Leukemias. In W. Li (Ed.), Leukemia. Exon Publications.
Llimpe Y. (2021). Cytogenetic risk groups for childhood acute myeloid leukemia based on survival analysis in a cancer referral hospital from Perú. Grupos de riesgo citogenético de leucemia mieloide aguda pediátrica a partir del análisis de supervivencia en un hospital de referencia para cáncer en Perú. Biomedica : revista del Instituto Nacional de Salud, 41(2), 302–313. https://doi.org/10.7705/biomedica.5747
Metheny, L., Callander, N. S., Hall, A. C., Zhang, M. J., Bo-Subait, K., Wang, H. L., Agrawal, V., Al-Homsi, A. S., Assal, A., Bacher, U., Beitinjaneh, A., Bejanyan, N., Bhatt, V. R., Bredeson, C., Byrne, M., Cairo, M., Cerny, J., DeFilipp, Z., Perez, M. A. D., Freytes, C. O., … de Lima, M. (2021). Allogeneic Transplantation to Treat Therapy-Related Myelodysplastic Syndrome and Acute Myelogenous Leukemia in Adults. Transplantation and cellular therapy, 27(11), 923.e1–923.e12. https://doi.org/10.1016/j.jtct.2021.08.010
Mrózek K. (2022). Molecular cytogenetics in acute myeloid leukemia in adult patients: practical implications. Polish archives of internal medicine, 132(7-8), 16300. https://doi.org/10.20452/pamw.16300
Ouyang, G., Xu, Z., Jiang, D., Zhu, H., Wang, Y., Wu, W., Sun, Y., Sheng, L., Xu, K., Lou, Y., Mu, Q., Zhang, Y., Wu, N., Cheng, J., & Duan, S. (2019). Clinically useful flow cytometry approach to identify immunophenotype in acute leukemia. The Journal of international medical research, 47(4), 1483–1492. https://doi.org/10.1177/0300060518819637
Percival, M. E., Wang, H. L., Zhang, M. J., Saber, W., de Lima, M., Litzow, M., Kebriaei, P., Abdel-Azim, H., Adekola, K., Aljurf, M., Bacher, U., Badawy, S. M., Beitinjaneh, A., Bejanyan, N., Bhatt, V., Byrne, M., Cahn, J. Y., Castillo, P., Chao, N., Chhabra, S., … Sandmaier, B. M. (2021). Impact of depth of clinical response on outcomes of acute myeloid leukemia patients in first complete remission who undergo allogeneic hematopoietic cell transplantation. Bone marrow transplantation, 56(9), 2108–2117. https://doi.org/10.1038/s41409-021-01261-6
Pessoa, F. M. C. P., Machado, C. B., Barreto, I. V., Sampaio, G. F., Oliveira, D. S., Ribeiro, R. M., Lopes, G. S., de Moraes, M. E. A., de Moraes Filho, M. O., de Souza, L. E. B., Khayat, A. S., & Moreira-Nunes, C. A. (2023). Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia. Biomedicines, 11(4), 1098. https://doi.org/10.3390/biomedicines11041098
Porwit, A., & Béné, M. C. (2019). Multiparameter flow cytometry applications in the diagnosis of mixed phenotype acute leukemia. Cytometry. Part B, Clinical cytometry, 96(3), 183–194. https://doi.org/10.1002/cyto.b.21783
Quessada, J., Cuccuini, W., Saultier, P., Loosveld, M., Harrison, C. J., & Lafage-Pochitaloff, M. (2021). Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes, 12(6), 924. https://doi.org/10.3390/genes12060924
Safaei, A., Monabati, A., Mokhtari, M., Safavi, M., & Solhjoo, F. (2018). Evaluation of the CD123 Expression and FLT3 Gene Mutations in Patients with Acute Myeloid Leukemia. Iranian journal of pathology, 13(4), 438–446.
Saft L. (2023). The role of flow cytometry in the classification of myeloid disorders. Rolle der Durchflusszytometrie bei der Klassifikation myeloischer Neoplasien. Pathologie (Heidelberg, Germany), 44(Suppl 3), 164–175. https://doi.org/10.1007/s00292-023-01272-8
Seipel, K., Graber, C., Flückiger, L., Bacher, U., & Pabst, T. (2021). Rationale for a Combination Therapy with the STAT5 Inhibitor AC-4-130 and the MCL1 Inhibitor S63845 in the Treatment of FLT3-Mutated or TET2-Mutated Acute Myeloid Leukemia. International journal of molecular sciences, 22(15), 8092. https://doi.org/10.3390/ijms22158092
Thao, L. T. T., Ha, C. T., Ha, N. T. T., Beaupha, S. M. C., Nghia, H., Tung, T. T., Son, N. T., Binh, N. T., Dung, P. C., Vu, H. A., & Xinh, P. T. (2023). Cytogenetic Characteristics of de novo Acute Myeloid Leukemia in Southern Vietnam. Asian Pacific journal of cancer prevention : APJCP, 24(5), 1789–1795. https://doi.org/10.31557/APJCP.2023.24.5.1789
Thol, F., & Ganser, A. (2020). Treatment of Relapsed Acute Myeloid Leukemia. Current treatment options in oncology, 21(8), 66. https://doi.org/10.1007/s11864-020-00765-5
Vergez, F., Largeaud, L., Bertoli, S., Nicolau, M. L., Rieu, J. B., Vergnolle, I., Saland, E., Sarry, A., Tavitian, S., Huguet, F., Picard, M., Vial, J. P., Lechevalier, N., Bidet, A., Dumas, P. Y., Pigneux, A., Luquet, I., Mansat-De Mas, V., Delabesse, E., Carroll, M., … Récher, C. (2022). Phenotypically-defined stages of leukemia arrest predict main driver mutations subgroups, and outcome in acute myeloid leukemia. Blood cancer journal, 12(8), 117. https://doi.org/10.1038/s41408-022-00712-7
Weerakoon-Ratnayake, K. M., Vaidyanathan, S., Larky, N., Kavya Dathathreya, Hu, M., Jose, J., Mog, S., August, K., Godwin, A. K., Hupert, M. L., Witek, M. A., & Soper, S. A. (2020). Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells. Cells, 9(2), 519–519. https://doi.org/10.3390/cells9020519
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Research in Medicine and Health
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.