Eventos oxidativos relacionados à angiotensina II e angiotensina 1-7 na hipertensão
uma revisão de estudos pré-clínicos
DOI:
10.52832/jormed.v2.452Resumen
A supra regulação do sistema renina-angiotensina-aldosterona e o estresse oxidativo estão entre principais eventos relacionados a patogênese e fisiopatologia da HAS. No sistema renina-angiotensina, em específico a Angiotensina II e a recentemente descoberta Angiotensina-(1-7), apresentam-se como importantes moduladores do estado redox. Neste sentido, o objetivo deste estudo foi descrever os efeitos promovidos pela Angiotensina II e Angiotensina 1-7 sobre parâmetros oxidativos e as implicações sobre a pressão arterial. Trata-se de um estudo de revisão, desenvolvido nas bases de dados PubMed, SciELO e ScienceDirect. Destaca-se a importante relação entre o braço clássico do sistema, especificamente relacionado a interação entre a angiotensina-II e receptor de angiotensina de subtipo I e o desenvolvimento de estresse oxidativo. De forma contrária destacando a Angiotensina-(1-7) com efeitos opostos a esse lado do sistema. Dessa forma, observa-se a importância da abordagem direcionada para este lado protetor do sistema, o qual mostra-se como um futuro alvo terapêutico para o tratamento da hipertensão.
Citas
Annor FB, Goodman M, Okosun IS, Wilmot DW, Il’yasova D, Ndirangu M, et al. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population. Journal of the American Society of Hypertension. 2015;9(8):592–9.
Bhat SA, Fatima Z, Sood A, Shukla R, Hanif K. The Protective Effects of AT2R Agonist, CGP42112A, Against Angiotensin II-Induced Oxidative Stress and Inflammatory Response in Astrocytes: Role of AT2R/PP2A/NFκB/ROS Signaling. Neurotoxicity Research. 2021;39(6):1991–2006.
Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. The Lancet. 2021;398(10296):249–61.
Cui C, Xu P, Li G, Qiao Y, Han W, Geng C, et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biology. 2019;26:101295.
Erusalimsky JD. Vascular endothelial senescence: from mechanisms to pathophysiology. Journal of Applied Physiology. 2009;106(1):326–32.
Fan LM, Liu F, Du J, Geng L, Li J-M. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biology. 2022;51:102269.
Ghatage T, Goyal SG, Dhar A, Bhat A. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertension Research. 2021;44(7):740–55.
Gironacci MM, Cerniello FM, Longo CNA, Goldstein J, Cerrato BD. Protective axis of the renin–angiotensin system in the brain. Clinical Science. 2014;127(5):295–306.
Hartmann C, Schulz I, Epe B, Schupp N. Angiotensin II-induced hypertension increases the mutant frequency in rat kidney. Archives of Toxicology. 2019;93(7):2045–55.
Lapi D, Cammalleri M, Dal Monte M, Di Maro M, Santillo M, Belfiore A, et al. The Effects of Angiotensin II or Angiotensin 1-7 on Rat Pial Microcirculation during Hypoperfusion and Reperfusion Injury: Role of Redox Stress. Biomolecules. 2021;11(12):1861.
Leskov I, Neville A, Shen X, Pardue S, Kevil CG, Granger DN, et al. Nicotinamide nucleotide transhydrogenase activity impacts mitochondrial redox balance and the development of hypertension in mice. Journal of the American Society of Hypertension. 2017;11(2):110–21.
Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD. Chronic administration of sodium nitrite prevents hypertension and protects arterial endothelial function by reducing oxidative stress in angiotensin II-infused mice. Vascular Pharmacology. 2018;102:11–20.
Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascular Pharmacology. 2019;115:13–7.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine. 2009;6(7):e1000097.
Montezano AC, Touyz RM. Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies. Ann Med 2012;44(Suppl 1):S2–16.
Patel SN, Ali Q, Hussain T. Angiotensin II Type 2–Receptor Agonist C21 Reduces Proteinuria and Oxidative Stress in Kidney of High-Salt–Fed Obese Zucker Rats. Hypertension. 2016;67(5):906–15.
Qiu M, Shu H, Li L, Shen Y, Tian Y, Ji Y, et al. Interleukin 10 Attenuates Angiotensin II-Induced Aortic Remodelling by Inhibiting Oxidative Stress-Induced Activation of the Vascular p38 and NF-κB Pathways. Han Y, editor. Oxidative Medicine and Cellular Longevity. 2022;2022:1–15.
Rabelo LA, Alenina N, Bader M. ACE2–angiotensin-(1–7)–Mas axis and oxidative stress in cardiovascular disease. Hypertension Research. 2010;34(2):154–60.
Raffai G, Lombard JH. Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats. Journal of Vascular Research. 2016;53(1-2):105–18.
Rahimi O, Kirby J, Varagic J, Westwood B, Tallant EA, Gallagher PE. Angiotensin-(1–7) reduces doxorubicin-induced cardiac dysfunction in male and female Sprague-Dawley rats through antioxidant mechanisms. American Journal of Physiology-Heart and Circulatory Physiology. 2020;318(4):H883–94.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017;1863(5):1106–14.
Romero, Alejandra et al. “The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation.” Aging cell vol. 18,3 (2019): e12913. doi:10.1111/acel.12913
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology. 2020;76(25):2982–3021.
Sabuhi R, Ali Q, Asghar M, Al-Zamily NRH, Hussain T. Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats. American Journal of Physiology-Renal Physiology. 2011;300(3):F700–6.
Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11(2_pt_2).
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews. 2018;98(1):505–53.
Savoia C, Arrabito E, Parente R, Nicoletti C, Madaro L, Battistoni A, et al. Mas Receptor Activation Contributes to the Improvement of Nitric Oxide Bioavailability and Vascular Remodeling During Chronic AT1R (Angiotensin Type-1 Receptor) Blockade in Experimental Hypertension. Hypertension. 2020;76(6):1753–61.
Silva MVB da, Alves BV dos S, Sales M da S, Lima Filho CA de, Oliveira A da S, Barros GLP de, et al. Caracterização do perfil epidemiológico da mortalidade por doenças cardiovasculares no Brasil: um estudo descritivo. Enfermagem Brasil. 2022;21(2):154–65.
Silva MVB, Sousa Júnior CP de, Silva HVC da, Santos VM dos, Feijao FIM, Bernardino A de O, et al. Evaluation of the cardioprotective and antihypertensive effect of AVE 0991 in normotensive and hypertensive rats. Revista da Associação Médica Brasileira. 2022.
Souza MT de, Silva MD da, Carvalho R de. Integrative review: what is it? How to do it? Einstein (São Paulo). 2010;8(1):102–6.
Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;i4098.
Valente AJ, Yoshida T, Murthy SN, Sakamuri SSVP, Katsuyama M, Clark RA, et al. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. American Journal of Physiology-Heart and Circulatory Physiology. 2012;303(3):H282–96.
Vasile S, Hallberg A, Sallander J, Hallberg M, Åqvist J, Gutiérrez-de-Terán H. Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules. 2020;10(4):649.
Virdis A, Duranti E, Taddei S. Oxidative Stress and Vascular Damage in Hypertension: Role of Angiotensin II. International Journal of Hypertension. 2011;2011:1–7.
Wang C, Luo Z, Carter G, Wellstein A, Jose PA, Tomlinson J, et al. NRF2 prevents hypertension, increased ADMA, microvascular oxidative stress, and dysfunction in mice with two weeks of ANG II infusion. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2018;314(3):R399–406.
Xu P, Costa-Goncalves AC, Todiras M, Rabelo LA, Sampaio WO, Moura MM, Santos SS, Luft FC, Bader M, Gross V, Alenina N, Santos RA. Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 2008; 51: 574–580.
Yu X-J, Miao Y-W, Li H-B, Su Q, Liu K-L, Fu L-Y, et al. Blockade of Endogenous Angiotensin-(1–7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension. Neuroscience Bulletin. 2018;35(1):47–56.
Zablocki D, Sadoshima J. Angiotensin II and Oxidative Stress in the Failing Heart. Antioxidants & Redox Signaling. 2013;19(10):1095–109.
Zhang F, Tang H, Sun S, Luo Y, Ren X, Chen A, et al. Angiotensin-(1-7) induced vascular relaxation in spontaneously hypertensive rats. Nitric Oxide. 2019;88:1–9.
Zhang F, Xu Y, Pan Y, Sun S, Chen A, Li P, et al. Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats. Oxidative Medicine and Cellular Longevity. 2019;2019:1–12.
Zhu Y, Xu D, Deng F, Yan Y, Li J, Zhang C, et al. Angiotensin (1-7) Attenuates Sepsis-Induced Acute Kidney Injury by Regulating the NF-κB Pathway. Frontiers in Pharmacology. 2021;12.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Journal of Research in Medicine and Health - JORMED
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.